Output Functional Control for Nonlinear Equations Driven by Anisotropic Mesh Adaption: The Navier--Stokes Equations

نویسندگان

  • Stefano Micheletti
  • Simona Perotto
چکیده

The contribution of this paper is twofold: firstly, a general approach to the goal-oriented a posteriori analysis of nonlinear partial differential equations is laid down, generalizing the standard DWR method to PetrovGalerkin formulations. This accounts for: different approximations of the primal and dual problems; nonhomogeneous Dirichlet boundary conditions, even different on passing from the primal to the dual problem; the error due to data approximation; the effect of stabilization (e.g. for advectivedominated problems). Secondly, moving from this framework, and employing anisotropic interpolation error estimates, a sound anisotropic mesh adaption procedure is devised for the numerical approximation of the NavierStokes equations by continuous piecewise linear finite elements. The resulting adaptive procedure is thoroughly addressed and validated on some relevant test cases. This work has been supported by COFIN 2006 “Numerical Approximation of Multiscale and Multiphysics Problems with Adaptive Methods”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic Simplex Mesh Adaptation by Metric Optimization for Higher-order Dg Discretizations of 3d Compressible Flows

We extend our optimization-based framework for anisotropic simplex mesh adaptation to three dimensions and apply it to high-order discontinuous Galerkin discretizations of steady-state aerodynamic flows. The framework iterates toward a mesh that minimizes the output error for a given number of degrees of freedom by considering a continuous optimization problem of the Riemannian metric field. Th...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

Efficient Solution Techniques for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations on Hybrid Anisotropic Meshes

The goal of this paper is to investigate and develop fast and robust solution techniques for high-order accurate Discontinuous Galerkin discretizations of non-linear systems of conservation laws on unstructured meshes. Previous work was focused on the development of hp-multigrid techniques for inviscid flows and the current work concentrates on the extension of these solvers to steady-state vis...

متن کامل

Automated Goal-Oriented Error Control I: Stationary Variational Problems

This article presents a general and novel approach to the automation of goal-oriented error control in the solution of nonlinear stationary finite element variational problems. The approach is based on automated linearization to obtain the linearized dual problem, automated derivation and evaluation of a posteriori error estimates, and automated adaptive mesh refinement to control the error in ...

متن کامل

A Simplex Cut-Cell Adaptive Method for High-Order Discretizations of the Compressible Navier-Stokes Equations

While an indispensable tool in analysis and design applications, Computational Fluid Dynamics (CFD) is still plagued by insufficient automation and robustness in the geometryto-solution process. This thesis presents two ideas for improving automation and robustness in CFD: output-based mesh adaptation for high-order discretizations and simplex, cut-cell mesh generation. First, output-based mesh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008